基于LCD-YOLO的车辆检测算法
作者:
作者单位:

(1. 重庆邮电大学 通信与信息工程学院, 重庆 400065;2. 昆明云内动力股份有限公司, 昆明 650200)

作者简介:

代少升(1974-),男,河南省潢川县人,博士,教授,主要从事红外成像系统及SOPC嵌入式系统设计与开发;

中图分类号:

TP391


Research on Vehicle Detection Algorithm Based on Lightweight Car Detection-YOLO
Author:
Affiliation:

(1. School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, CHN;2. Kunming Yunnei Power Co., Ltd., Kunming 650200, CHN)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对现有YOLOv8s车辆检测模型的检测精度低、参数量多、计算量大的问题,提出了一种基于改进YOLOv8s的LCD-YOLO轻量化车辆目标检测算法。该算法使用频率自适应膨胀卷积优化YOLOv8s中的C2f模块,以提升特征融合能力;使用共享卷积层,减少网络卷积次数,以此减少参数量来实现模型轻量化;通过动态聚焦的边界框回归损失计算方法,能够有效增强网络对遮挡重叠目标检测能力,提高边框检测精度。在KITTI数据集上进行实验,结果表明所提算法平均检测精度提升到95.1%,相比于YOLOv8s算法检测精度提高了2.9%,网络参数量减少14.9%,计算量减少10.9%,能更好满足车辆的实际检测需求。

    Abstract:

    To address the issues of the low detection accuracy, exorbitant number of parameters, and extensive computations in the existing YOLOv8s vehicle detection model, a lightweight car detection-YOLO (LCD-YOLO) algorithm based on improved YOLOv8s is proposed for lightweight vehicle target detection. The algorithm applies frequency-adaptive dilated convolution (FADC) to optimize the cross-range partial (CSP) bottleneck with two convolutions (C2f) in YOLOv8s to enhance feature fusion ability. Shared convolutional layers reduce the number of network convolutions and parameters, thereby achieving a lightweight model. Through the dynamic focusing of the bounding box regression loss calculation method, this model can effectively improve the network's ability to detect occluded overlapping targets and improve the accuracy of border detection. Experiments on the KITTI dataset show that the average detection accuracy of the proposed algorithm is improved to 95.1%, which is 2.9% higher than that of the YOLOv8s algorithm, while reducing the number of network parameters by 14.9% and amount of computation by 10.9%, which can better satisfy the actual detection needs of vehicles.

    参考文献
    相似文献
    引证文献
引用本文

代少升,代佳伶,余自安.基于LCD-YOLO的车辆检测算法[J].半导体光电,2024,45(6):1039-1046. DAI Shaosheng, DAI Jialing, YU Zian. Research on Vehicle Detection Algorithm Based on Lightweight Car Detection-YOLO[J].,2024,45(6):1039-1046.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-26
  • 在线发布日期: 2025-02-20
文章二维码

漂浮通知

①关于用户登录弱密码必须强制调整的说明
②《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注