基于CCL-YOLO的洗手动作检测算法
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学 通信与信息工程学院;2.重庆邮电大学 自动化学院;3.西南大学 电子信息工程学院;4.重庆邮电大学 国际学院

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市教委项目(KJQN202200627);陕西省重点研发计划项目(2023-YBNY-222)


Hand Washing Action Detection Algorithm Based on CCL-YOLO
Author:
Affiliation:

1.School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications;2.School of Automation, Chongqing University of Posts and Telecommunications;3.School of Electronic and Information Engineering, Southwest University;4.International College, Chongqing University of Posts and Telecommunications

Fund Project:

Chongqing Municipal Education Commission Project (KJQN202200627); Shaanxi Provincial Key R&D Program Project (2023-YBNY-222)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有YOLOv7模型对洗手动作检测精度低,受环境噪声影响大,相似动作易混淆等问题,提出了一种基于改进YOLOv7的CCL-YOLO目标检测算法。该算法通过引入自注意力机制EALN-CotAttention,以获取更多的上下文信息;使用CARAFE优化YOLOv7中最近邻插值方法的上采样,促进了高效的内容感知与特征重组,提高了对动作检测的精度;通过SPPFCSPC替换YOLOv7中的SPPCSPC,以参数量较少的卷积核得到了相同的感受野;采用了LADH-Dectect检测头替换YOLO网络中原始的耦合检测头,提高了模型性能,相比于普通解耦检测头,减少了网络参数和GFLOPs,进而提高了推理速度。在自制数据集上进行实验,结果表明所提算法平均精度提升到81.2%,相比于YOLOv7算法检测精度提高7.2%,精确率提高2.9%,召回率提高11%,更好满足洗手动作检测的实际需求。

    Abstract:

    To address the issues of low detection accuracy for hand-washing actions, significant environmental noise interference, and confusion between similar actions in the existing YOLOv7 model, an improved CCL-YOLO object detection algorithm based on YOLOv7 is proposed. This algorithm introduces the self-attention mechanism EALN-CotAttention to obtain more contextual information; it utilizes CARAFE to optimize the upsampling of the nearest neighbor interpolation method in YOLOv7, promoting efficient content perception and feature recombination, thereby improving the accuracy of action detection; it replaces the SPPCSPC in YOLOv7 with SPPFCSPC, achieving the same receptive field with fewer parameters in the convolutional kernel; it adopts the LADH-Dectect detection head instead of the original coupled detection head in the YOLO network, enhancing model performance. Compared to ordinary decoupled detection heads, this reduces network parameters and GFLOPs, thereby increasing inference speed. Experiments on a custom dataset show that the proposed algorithm improves average precision to 81.2%, which represents a 7.2% increase in detection accuracy, a 2.9% increase in precision, and an 11% improvement in recall rate compared to the YOLOv7 algorithm, better meeting the practical needs of hand-washing action detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-08
  • 最后修改日期:2024-11-04
  • 录用日期:2024-11-04
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注