基于场协同原理和NSGA-Ⅱ的扇形穴-梯形肋微通道多目标优化
CSTR:
作者:
作者单位:

(1. 五邑大学 智能制造学部, 广东 江门 529020;2. 乌克兰国家科学院 瓦西里·拉什卡廖夫半导体物理研究所, 基辅 03028;3. 香港科技大学 机械及航空航天系, 香港 999077)

作者简介:

王俊超(1996-),男,河南省人,硕士研究生,主要研究方向为电子器件热管理与热设计;

通讯作者:

中图分类号:

O351;TK124

基金项目:

广东省重点领域研发计划资助项目(2020B090922004);粤港澳联合研发基金资助项目(2019WGALH22).通信作者:曹明轩,王天雷


Multi-objective Optimization of A Trapezoidal-rib and Fan-groove Microchannel Based on the Field Synergy Principle and NSGA-Ⅱ
Author:
Affiliation:

(1. School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, CHN;2. V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, UKR;3. Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, CHN)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用数值方法研究了不同结构参数下扇形穴-梯形肋微通道的流动和传热特性。发现肋高(α)对总热阻(Rth)和压降(Δp)的影响最为显著;随着α的增大,Rth迅速减小,而Δp迅速增大。为获得最优参数,采用响应面法、非支配遗传算法Ⅱ(NSGA-Ⅱ)和相似理想解排序技术(TOPSIS)进行多目标优化。并基于场协同原理和强化传热系数(PEC)对优化前后微通道的整体性能进行评价。结果表明,当Rth均为0.1858K/W时,优化后的微通道的Wpp仅为0.0062W,比未优化的微通道降低了53.38%;当Wpp均为0.0132W时,优化后的微通道Rth比未优化的微通道Rth降低了13.04%,仅为0.16K/W。优化后微通道的PEC高于未优化前,当Re=231时,PEC从1.163增加到1.253,增加了7.74%;当Re=631时,PEC最大为1.4515。场协同原理表明,TOPSIS最优微通道的速度场和温度场协同效果最好(FC=0.01889)。

    Abstract:

    Under different structural parameters, the flow and heat transfer characteristics of TF-MCHS are studied using numerical methods. The results show that the rib height (α) has the most significant effect on the total thermal resistance (Rth) and pressure decrease (Δp). As α increases, the Rth of the microchannel decreases rapidly, but Δp increases rapidly. To obtain the best parameter, a multi-objective optimization was performed using the response surface methodology (RSM), non-dominated sorting genetic algorithm (NSGA-Ⅱ), and the technique for order preference by similarity to the ideal solution (TOPSIS). According to the field synergy principle and the performance evaluation criteria (PEC), the overall performance of the microchannel before and after optimization was assessed. The results show that when Rth is 0.1858K/W, the pumping power (Wpp) of the optimized microchannel is 53.38% lower than that of the unoptimized microchannel, at only 0.0062W. When Wpp is 0.0132W, the Rth of the optimized microchannel decreases by 13.04%, compared with that of the unoptimized microchannel, at only 0.16K/W. The PEC of the TOPSIS optimal microchannel is higher than that of the unoptimized microchannel. At Re=231, the PEC increases from 1.163 to 1.253, an increase of 7.74%. At Re= 631, the PEC is 1.4515. The field synergy principle indicates that the velocity field and temperature field of the TOPSIS optimal microchannel have the best synergy effect (Fc=0.01889).

    参考文献
    相似文献
    引证文献
引用本文

王俊超,刘人鞠,杨光照,Ivan Babichuk,曹明轩,臧鲁浩,王天雷,王颖,袁铭辉.基于场协同原理和NSGA-Ⅱ的扇形穴-梯形肋微通道多目标优化[J].半导体光电,2024,45(5):767-779. WANG Junchao, LIU Renju, YANG Guangzhao, Ivan Babichuk, CAO Mingxuan, ZANG Luhao, WANG Tianlei, WANG Ying, YUAN Minghui. Multi-objective Optimization of A Trapezoidal-rib and Fan-groove Microchannel Based on the Field Synergy Principle and NSGA-Ⅱ[J].,2024,45(5):767-779.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注