多层次架构下融合自注意力的三维激光点云语义分割算法
DOI:
CSTR:
作者:
作者单位:

1.国网辽宁省电力有限公司 丹东供电公司;2.沈阳农业大学 信息与电气工程学院

作者简介:

通讯作者:

中图分类号:

TP391 ?

基金项目:

国网辽宁省电力有限公司管理科技项目资助(SGTYHT/23-JS-001)


3D laser point cloud with self-attention under multi-level architectureSemantic segmentation algorithms
Author:
Affiliation:

1.Shenyang Agricultural University,College of Information and Electrical Engineering,Shenyang,Liaoning;2.State Grid Liaoning Electric Power Company Limited,Dandong Power Supply Company,Dandong,Liaoning

Fund Project:

State Grid Liaoning Electric Power Co., Ltd. Management Science and Technology Project Funding

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前的三维激光点云局部特征提取不充分且缺少上下文特征信息融合的问题,提出一种融合自注意力机制与多层次点云特征提取架构的MAKNet点云特征提取网络。网络以三维激光点云数据作为输入,通过引入SAA模块,以最远点采样算法及结合自注意力机制的K近邻采样算法提取点云全局特征及局部特征,利用增加中心点特征值与其邻域点特征值之间关注权重值,抑制稀疏点特征低识别度问题,然后采用连续两次在不同区域尺度进行SAA模块特征提取的方式,进行多层点特征提取和融合,最后再进行点云特征的跳跃链接组合,以得到更精细的点云特征细节,扩大每个点云感受野,增加被提取点信息涵盖量,提高网络泛化能力。实验结果表明,在公开数据集S3DIS上总体准确率(Overall Accuracy, OA)相比于PointNet++由80.1%提升至86.9%,在自建集输电线路走廊数据集上总体准确率(Overall Accuracy, OA)达到96.4%,证明了MAKNet网络在语义分割任务上具有良好的鲁棒性以及在实际场景数据上具有较强的泛化能力。

    Abstract:

    In order to solve the problem of insufficient local feature extraction and lack of contextual feature information fusion in 3D laser point clouds, a MAKNet point cloud feature extraction network integrating self-attention mechanism and multi-level point cloud feature extraction architecture was proposed. The network takes 3D laser point cloud data as input, and through the introduction of SAA module, the global and local features of the point cloud are extracted by the farthest point sampling algorithm and the K-nearest neighbor sampling algorithm combined with the self-attention mechanism, and the weight value between the center point feature value and the neighborhood point feature value is increased to suppress the problem of low recognition of sparse point features, and then the SAA module feature extraction is carried out twice in a row at different regional scales to extract and fuse multi-layer point features, and finally the point cloud features are spliced and combined. In order to obtain finer details of point cloud features, expand the receptive field of each point cloud, increase the coverage of extracted point information, and improve the network generalization ability. Experimental results show that the Overall Accuracy (OA) of the public dataset S3DIS is increased from 80.1% to 86.9% compared with PointNet++, and the Overall Accuracy (OA) of the self-built collection and transmission line corridor dataset reaches 96.4%, which proves that the MAKNet network has good robustness in semantic segmentation tasks and strong generalization ability in actual scene data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-02-27
  • 录用日期:2024-03-22
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注