基于深度学习的燃气PE管道焊缝缺陷检测
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学 自动化学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

江苏省工业和信息产业转型升级专项:基于智能运维的城市轨道交通应急防灾和安全运营关键技术攻关及产业化。


Gas PE pipeline Weld Defect Detection Dased on Improved YOLOv5 and DeepLabv3+
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决人工与传统数字图像处理方法进行燃气PE管道焊缝缺陷识别时面临的效率低、漏检率高、评片效果不佳等问题,提出了基于改进YOLOv5和Deeplabv3+算法的燃气PE管道焊缝缺陷智能检测方法,实现从输入燃气PE管道焊缝DR检测图像到输出缺陷种类及其测量值的精细化测量。首先,在宏观区域层面采用YOLOv5网络预提取缺陷区域,减少与缺陷相似的非目标区域的干扰,并设计了融合坐标注意力机制(CA)与加权双向特征金字塔网络(BiFPN)的CA-BiFPN模块,以提高对小目标缺陷检测能力,其最终的缺陷识别定位平均精确度为95.1%。然后,在微观边界层面采用语义分割算法Deeplabv3+,实现像素级别的缺陷分割,缺陷分割平均像素准确率91.25%、平均交并比值为85.52%。最后,在几何特征层面采用最小外接矩形法计算其实际尺寸大小,其平均相对误差为5.47%。结果表明该检测方法可实现燃气PE管缺陷高效率、高精度、智能化检测。

    Abstract:

    In order to solve the problems of low efficiency, high missed detection rate and poor evaluation effect when manual and traditional digital image processing methods are used to identify gas PE pipeline weld defects, an intelligent detection method for gas PE pipeline weld defects based on improved YOLOv5 and Deeplabv3+ algorithms is proposed. Realize the fine measurement from the input gas PE pipeline weld DR Detection image to the output defect types and their measured values. Firstly, YOLOv5 network was used to pre-extract the defect region at the macro region level to reduce the interference of non-target regions similar to the defect, and a CA-BIFPN module integrating coordinate attention mechanism (CA) and weighted bidirectional Feature Pyramid network (BiFPN) was designed to improve the detection ability of small target defects. The final average accuracy of defect identification and location is 92.5%. Then, at the micro boundary level, Deeplabv3+, a deep semantic segmentation network, is used to achieve pixel-level defect segmentation. The average pixel accuracy of defect segmentation is 91.25%, and the average intersection and union ratio is 85.52%. Finally, the minimum enclosing rectangle method is used to calculate the actual size at the geometric feature level, and the average relative error is 5.48%. The results show that the method can achieve high efficiency, high precision and intelligent detection of gas PE pipe defects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-11
  • 最后修改日期:2023-09-11
  • 录用日期:2023-10-07
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注