基于CVMD和DBO-SVM的光纤周界安防信号识别方法
DOI:
CSTR:
作者:
作者单位:

华北电力大学(保定)

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河北省自然科学基金(E2019502179)


Fiber optic perimeter security signal recognition method based on CVMD and DBO-SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低光纤周界安防信号中噪声对分类结果的影响,提升信号分类的准确率和运行效率,本文提出一种融合了相关变分模态分解(Correlation Variational Mode Decomposition,CVMD)、蜣螂算法(Dung Beetle Optimizer, DBO)和支持向量机(Support Vector Machine, SVM)的分类方法。利用CVMD去除原始信号中的噪声分量,并提取去噪后信号的能量、能量熵和峭度作为特征向量。采用DBO算法优化SVM,得到最佳惩罚因子和核函数参数,并构建DBO-SVM分类模型。搭建了基于相位敏感光时域反射(Φ-OTDR)技术的周界安防系统,采集了攀爬、敲击、踩踏和无入侵四类信号。实验结果表明,CVMD-DBO-SVM的分类准确率相比CVMD-PSO-SVM和CVMD-GA-SVM更高,达到了98.75%,同时运行时间更短,综合性能最优。

    Abstract:

    In order to reduce the influence of noise in the fiber optic perimeter security signal on the classification results and improve the accuracy and operating efficiency of signal classification, in this paper a classification method combine Correlation Variational Mode Decomposition (CVMD), Dung Beetle Optimizer (DBO), and Support Vector Machine (SVM) was proposed. CVMD was used to remove the noise component in the original signal. The energy, energy entropy and kurtosis of the denoised signal were extracted as feature vectors. The DBO algorithm was adopted to optimize the SVM to obtain the best penalty factor and kernel function parameters. The DBO-SVM classification model was constructed. A perimeter security system based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) technology was built to collect four types of signals: climbing, knocking, stepping and non-intrusion. The experimental results show that the classification accuracy of CVMD-DBO-SVM is higher than that of CVMD-PSO-SVM and CVMD-GA-SVM, reaching 98.75%. At the same time, the running time is shorter and the overall performance is the best.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-01
  • 最后修改日期:2023-08-01
  • 录用日期:2023-08-18
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注