多尺度特征融合U-net的遥感影像黑臭水体智能检测
DOI:
CSTR:
作者:
作者单位:

1.中科星图股份有限公司 战略交付部;2.中科星图智慧科技有限公司 战略交付部;3.生态环境部卫星环境应用中心 数据中心

作者简介:

通讯作者:

中图分类号:

P237;X824;TP751

基金项目:

国家重点研发计划“生态环境一体化智慧监管系统研发与应用示范”课题中“生态环境遥感快速监测评估与智慧监管应用示范”支持(课题编号:2021YFB3901105).


Intelligent Detection of Impaired Water in Remote Sensing Images based onMulti-scale Feature Fusion U-net
Author:
Affiliation:

1.Strategic Delivery Department of Geovis Wisdom Technology Co;2.Strategic Delivery Department of Geovis Technology Co,Ltd;3.Data Center,Satellite Environment Application Center of Ministry of Ecology and Environment

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前遥感监管无法达到高精度、全方位和短周期的监管需求,尤其是在受损水体活动快速监管领域仍存在明显短板等问题。研究采用卫星遥感技术获取高分辨率遥感影像水体样本数据集,基于深度卷积神经网络从高分辨遥感影像中提取水体并进行黑臭水体智能监测,提出了一种改进U-Net的黑臭水体检测网络模型(Impaired Water Detection Network,IWDNet)。首先基于U-Net结构引入跳跃式多尺度特征融合,结合通道注意力机制、卷积注意力模块、通道与空间注意力机制生成不同多尺度特征融合注意力机制(Multi-scale Feature Fusion Attention Moudle,MFFAM)模块进行对比,并引入空洞卷积扩大网络感受野,最终实现黑臭水体的识别检测。实验证明:基于跳跃式多尺度融合与CBAM注意力机制的黑臭水体检测网络(MFFCBAM-IWNet)模型有效提升了识别精度,在高分辨遥感影像水体样本数据集上表现最佳,总体精度达98.56%,Kappa系数达0.9784,模型在广东省等地共计检测到30个疑似受损水体点位,其中疑似受损河渠27处,疑似受损湖塘3处,疑似黑臭水体水域总面积为8094m2,研究结果可为生态环境遥感智慧化监管提供数据支撑。

    Abstract:

    In view of the fact that the current remote sensing supervision cannot meet the regulatory requirements of high precision, all-round and short period, especially in the field of rapid supervision of impaired water activities, there are still obvious shortcomings. Satellite remote sensing technology is used to obtain high-resolution remote sensing image water dody data set, based on deep convolutional neural network, water body is extracted from high-resolution remote sensing images and intelligent monitoring of impaired water body is carried out. An Improved Water Detection Network ( IWDNet ) model based on the proposed U-Net. Firstly, based on the U-Net structure, skip multi-scale feature fusion is introduced, and different Multi-scale Feature Fusion Attention Mechanisms ( MFFAM ) modules are generated by combining SE, ECA and CBAM attention mechanisms for comparison. The dilated convolution is introduced to expand the network receptive field, and finally the recognition and detection of black and odorous water bodies are realized. Experiments show that the MFFCBAM-IWNet model based on skip multi-scale fusion and CBAM attention mechanism effectively improve the recognition accuracy, and performs best on the high-resolution remote sensing image water body data set. The overall accuracy is 98.56 %, and the Kappa coefficient is 0.9784. A total of 30 suspected damaged water points were detected in Guangdong Province and other places, including 27 suspected impaired rivers and 3 suspected impaired lakes. The research results can provide data supports for intelligent supervision of ecological environment remote sensing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-19
  • 最后修改日期:2023-07-19
  • 录用日期:2023-08-04
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注