基于改进YOLOv5的荧光图像细胞智能检测研究
DOI:
CSTR:
作者:
作者单位:

华中科技大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Intelligent Detection of Cells in Fluorescence Images Based on Improved YOLOv5
Author:
Affiliation:

School of Mechanical Science Engineering,Huazhong University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决人工对FISH(Fluorescence In Situ Hybridization, 荧光原位杂交)荧光图像进行结果判读存在的效率低、劳动强度大等问题,针对FISH荧光图像细胞智能检测提出一种融合空域图像增强的改进YOLOv5算法。算法在原始YOLOv5神经网络模型基础上,加入了空域图像增强模块,并选择了模块最佳增强系数,扩大了模型对荧光图像的对比度适应范围,提高了模型的特征提取能力和细胞检测准确率。实验结果显示,改进YOLOv5模型的mAP(Mean Average Precision, 平均精度均值)为0.983,达到了比原始模型更优的训练效果和收敛速度,并且,改进YOLOv5模型的细胞识别率达到91.65%,比原始YOLOv5模型提升了9.19%。将细胞智能检测算法嵌入自主开发的荧光图像智能检测软件,结合荧光点检测算法,可给出有效判读结果。

    Abstract:

    To solve the problems of low efficiency and high labor intensity in manual interpretation of FISH (fluorescence in situ hybridization) fluorescence images, an improved YOLOv5 algorithm that integrates spatial image enhancement was proposed for intelligent cell detection in FISH fluorescence images. On the basis of the original YOLOv5 neural network model, the algorithm added a spatial image enhancement module, and the optimal enhancement coefficient of this module was selected. This module expanded the contrast adaptation range of the model to fluorescence images, and improved the feature extraction ability and cell detection accuracy of the model. The experimental results showed that the mAP (Mean Average Precision) of the improved YOLOv5 model was 0.983, and the improved model achieved better training performance and convergence speed than the original model. Furthermore, the improved YOLOv5 model achieved a cell recognition rate of 91.65%, which was 9.19% higher than the original YOLOv5 model. The intelligent cell detection algorithm was embedded in the self-developed fluorescence image intelligent detection software. By combining the algorithm with fluorescence point detection algorithm, effective interpretation results could be provided.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-28
  • 最后修改日期:2023-05-28
  • 录用日期:2023-06-05
  • 在线发布日期:
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注