摘要:表情识别作为计算机视觉领域的研究热点,在情感识别、人机交互、智能安防等领域有着重要的应用。文章针对VGG19在训练人脸表情数据集时由于全连接层参数量过大而易过拟合的问题,利用胶囊网络CapsNet对VGG19的全连接层进行替换,以实现VGG19与CapsNet相级联,从而改善训练时过拟合的问题,同时使得级联后的模型在RAF-DB数据集上的精度提高了5.28%。针对VGG19特征提取网络的MaxPool易丢失人脸特征图信息的问题,利用SoftPool对MaxPool进行替换,从而在最大程度上保留了人脸的细粒度特征。实验结果表明,改进后的模型在RAF-DB数据集上取得了84.21%的精度,在FER2013数据集上取得了73.16%的精度,表情识别效果更优。