摘要:针对目前紫外成像仪中紫外光图像与可见光图像配准叠加精度低、电晕放电定位偏差大等问题,提出一种基于GoogLeNet模型、小波变换(Wavelet Transform,WT)和Canny算子相结合的紫外与可见光图像配准融合方法,并将其应用于高灵敏紫外成像仪中。首先,引入迁移学习的思想,利用预训练的GoogLeNet模型自主挖掘可见光图像和紫外图像的特征;其次,将提取出来的特征作为预测变量,输入极限学习机(Extreme Learning Machine,ELM),以空间变换参数为指导监督模型训练,实现高精度紫外与可见光图像配准;最后,利用二维小波变换与Canny算子对配准后的图像进行多分辨率分析与边缘检测,实现无紫外信息损失的图像融合。实验结果表明,所提方法的紫外与可见光图像配准精度高,融合效果良好,具有很好的工程实用价值。