基于逻辑校准的多分类残差网络的肺分割算法
CSTR:
作者:
作者单位:

(1. 武汉大学 物理科学与技术学院, 武汉 430072;2. 桂林航天工业学院 电子信息与自动化学院, 广西 桂林 541004)

作者简介:

雷雨婷(1996-),女,湖北荆门人,硕士生,研究方向为图像处理;

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2011CB707900);广西高校中青年教师科研基础能力提升项目(2019KY0816).通信作者:张东


An Algorithm of Lung Segmentation Based on Logit Adjustment in Multi-class Residual Network
Author:
Affiliation:

(1. School of Physics and Technology, Wuhan University, Wuhan 430072, CHN;2. Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, CHN)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图像噪声以及血管、支气管等因素引起的肺分割困难的问题,提出了一种基于逻辑校准的多分类残差网络分割算法。该算法将图像区域划分为肺、背景及边界三类,通过扩大不同类型间的差异来提升分割准确率。算法先将图像分割为固定尺寸区域,然后利用残差网络提取纹理特征进行分类训练与测试,实现粗分割。最后对边界区域阈值处理实现细分割。利用公开数据集对该算法进行了测试,实验结果表明,此分割算法在召回率、精确率以及交并比等方面均优于当下前沿的分割网络之一的U-Net,分别达到99.79%,98.13%和97.83%,可为后续的肺部疾病临床诊断提供参考依据。

    Abstract:

    In order to extract lung precisely, aiming at difficulty in segmentation of lung caused by interfering factors such as image noise, blood vessels and bronchus, an algorithm based on logit adjustment in multi-class residual network was proposed. The algorithm divided the image area into three categories:lung, background and boundary, which improves the segmentation accuracy by expanding the difference between different types of images. Firstly, the image was divided into regions with fixed size, then, a residual network was then trained to extract the texture features for classification and tested to achieve coarse segmentation. Finally, refining segmentation was conducted on regions which were marked as boundary based on threshold method. The segmentation performance of the proposed model was tested and verified by using a public dataset. The recall rate, precision and intersection over union of the algorithm were obtained as 99.79%, 98.13% and 97.83%, respectively, and the overall segmentation performance was higher than that of U-Net, one of the most cutting-edge segmentation networks. According to the experimental results, the proposed algorithm provides a reference basis for subsequent clinical diagnosis of lung diseases.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-03
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注