基于深度学习的目标检测技术的研究综述
CSTR:
作者:
作者单位:

(重庆邮电大学 光电工程学院, 重庆 400065)

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金项目(51604056).


Research Progresses of Target Detection Technology Based on Deep Learning
Author:
Affiliation:

(College of Optoelectronic Engin., Chongqing University of Posts and Telecommun., Chongqing 400065, CHN)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习已经成为机器视觉领域应用最为广泛的技术方法,基于深度学习的目标检测技术是当前的一项热门研究课题。文章首先对国内外目标检测技术的最新研究进展进行了梳理,并分析和总结了传统目标检测方法的优缺点;然后详细介绍了几种基于深度学习的目标检测技术及其优缺点;最后讨论了现阶段深度学习存在的问题和未来的发展方向。

    Abstract:

    Deep learning has become the most widely used technical method in the field of computer vision. Target detection technology based on deep learning is a hot research topic. In this paper, the latest research progress of target detection technology at home and abroad are reviewed, then the advantages and disadvantages of traditional target detection methods are analyzed and summarized. Then, several target detection techniques based on deep learning and their merits and demerits are introduced. Finally, the existing problems of deep learning and the development trends are discussed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-02-27
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注