一种基于自适应正则化的图像超分辨率重建模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市科委重大基础项目(16JC1400602);?国家自然科学青年基金项目(61603211);


Image Super-resolution Reconstruction Algorithm Based on Auto-adaptive Regularization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决图像超分辨率重建中稀疏系数解的不精确问题,提出了一种自适应正则化级联稀疏矩阵的超分辨率重建算法。根据图像自身的特性,采用自适应正则化项对图像局部进行处理,实现图像的局部约束,构建基于自适应正则化的稀疏矩阵函数。另外,为了提高图像的可清晰性,采用基于全局约束的退化模型改进处理结构。测试结果表明,与其他常用算法相比,提出的自适应正则化的图像超分辨率重建算法能够构建更清晰的超分辨率图像。

    Abstract:

    In order to solve the imprecise problem of the sparse coefficient solution in image super-resolution reconstruction, a super-resolution reconstruction algorithm based on adaptive regularized cascade sparse matrix was proposed. According to the characteristics of the image itself, adaptive regularization items were used to process the local image, so as to realize the local constraints of the image, and build a sparse matrix function based on adaptive regularization. In addition, in order to improve the clarity of the image, a degradation model based on global constraints was adopted to improve the process structure. Test results show that the proposed algorithm can construct clearer super-resolution images compared with other commonly used algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-07
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注