一种融合聚类的监督局部线性嵌入算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市教育委员会科学技术研究项目(KJ1400907; KJ1400911; CY160904);


Study on Supervised Local Linear Embedding Algorithm Based on Fusion Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射, 针对SLLE在均匀化高维数据的分布和最小化重构代价时, 忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形, 引入Kmeans++算法调整样本间距离, 进行最优近邻点的选择, 从而更有效地反映数据在高维空间中的实际分布, 使降维后的数据具备更好的可分性。通过ORL以及Yale人脸数据集上的仿真实验, 结果显示, 该方法具有更强的泛化能力及更高的识别率。

    Abstract:

    The supervised local linear embedding algorithm (SLLE) maps the high dimensional data in the low dimensional feature space through the label information of the data points. In the process of homogenizing the high dimensional data distribution and minimizing the reconstruction cost and for the situation that the sparse discrete data ignored in-class deviations from the population distribution may be incorrectly projected in other hyperplanes during the linear reconstruction, the Kmeans ++ algorithm is introduced to adjust the distance between the samples, and the selection of the optimal neighbor points making the data more efficiently reflect the actual distribution in the high-dimensional space, so that the reduced dimension of the data has better separability. Through the simulation of ORL and Yale data set, the proposed method has stronger generalization ability and higher recognition rate.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-14
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注