基于多阈值归一化分割的模糊图像边缘分割算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Segmentation Algorithms of Fuzzy Image Edge Based on Multi-threshold Normalized Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模糊图像边缘的像素特征较为复杂,一般需要采用多个阈值作为分隔约束条件的方法来进行图像边缘分割,但是该方法存在诸如多阈值无法形成统一标准、边缘提取过程需要多次校对,以及效率较低等缺点。提出一种基于多阈值归一化分割的模糊图像边缘分割算法,通过设计超像素网格对模糊图像边缘特征的像素进行匹配,分析模糊图像的反调张量信息,并根据不同张量信息对多阈值进行归一化,以及采用灰度窗口相关系数匹配方法,将获得的多阈值归一化结果分别覆盖图中的单一目标对象,以实现模糊图像的边缘分割。实验表明,利用该算法进行模糊图像边缘分割能较好地获取图像的边缘细节特征,使得边缘具有更好的连线段连通性和宽度一致性。?更多还原

    Abstract:

    The pixel features of edges of the blurred image are much complex, thus it generally uses multiple threshold as space constraints, but such problems exist in this method as it cannot form a unified standard threshold, edge detection process needs to be checked for many times, and the efficiency is low. In this paper, put forward is a more normalized segmentation algorithm of fuzzy image edge based on multi-threshold normalized segmentation. For the new segmentation algorithm, superpixel grid is designed to make pixel matching of the fuzzy image edge, tensor information of the fuzzy iamge is analyzed, and according to different tensor information, normalizations are performed on multiple thresholds. And with the gray window correlation matching method, the obtained multi-threshold normalization respectively overlays of the single target, thus realizing edge segmentation of blurred images. Experiments show that the proposed algorithm for fuzzy image edge segmentation can well reflect the image edge detail features, making the edge present better connectivity and width uniformity.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-06-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-03-13
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注