针对现有改进的Camshift手势跟踪算法没有考虑光照变化影响下的鲁棒性,进而降低了动态手势的识别率,提出一种基于深度预分割结合Camshift跟踪算法的动态手势识别法。通过在Camshift手势跟踪的基础上引入深度信息,对手势搜索区域进行深度预分割,改进手势目标匹配概率,去除非手势肤色区域及光照变化的影响,最后用隐马尔可夫模型(HMM)进行识别。实验结果表明,提出的方法在光照变化及肤色干扰的环境下有很好的鲁棒性,数字0~9的平均识别率可达97.7%。 更多还原