基于图像纹理特征的SIFT算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61275099); 信号与信息处理重庆市市级重点实验室建设项目(CSTC,2009CA2003); 重庆市自然科学基金项目(CSTC2010BB2398).


Improved Scale-invariant Feature Transform Algorithm Based on Image Texture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统尺度不变特征转换(SIFT)算法存在大量冗余的特征点, 而导致图像匹配过程中运算量大、效率低的问题, 提出一种基于图像纹理特征的SIFT算法。该算法首先采用排列组合熵方法提取图像纹理信息, 在此基础上利用SIFT算法提取特征点, 这样能够减少冗余特征点, 以有效提高算法匹配效率。实验测试结果表明, 该算法与传统的SIFT算法相比, 冗余特征点少, 特征点匹配效率提高到98.04%。

    Abstract:

    Aiming at the problem of lots of redundancy feature points existing in traditional scale-invariant feature transform(SIFT) algorithm which can led to large amount of computation and low efficiency in the image matching process, an improved SIFT algorithm based on image texture features is proposed. First, the algorithm uses permutation entropy extraction image texture information, on this basis, it uses SIFT to extract feature point, then it can reduce part of the redundancy feature points, in order to effectively improve the efficiency of matching algorithm. The simulation results show that the algorithm has fewer redundant feature points than the traditional SIFT algorithm. And the efficiency of matching feature points increases to 98.04%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-03-12
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注