摘要:为解决尺度、视角、光照变化较大及存在噪声和模糊变化情况下的图像拼接问题, 提出了一种具有较强鲁棒性的图像拼接方法。首先, 根据Harris算法和SIFT算法各自的特点, 提出了一种自适应的Harris-SIFT特征点提取方法, 利用最邻近法完成图像间的特征点粗匹配; 然后, 应用随机抽样一致性(Random Sample Consensus, RANSAC)算法对粗匹配的特征点进行筛选, 同时估计出透视变换模型的变换矩阵, 并对相邻的两帧图像进行配准; 最后, 利用加权平均融合算法消除图像拼接处的缝合线, 实现图像的高质量拼接。实验结果表明, 该算法在提升SIFT算法鲁棒性的同时, 还增强了图像拼接的效果, 消除了图像亮度和色度差异的影响。