基于自适应过完备稀疏表示的红外图像滤波方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61071196);教育部新世纪优秀人才支持计划项目(NCET-10-0927);信号与信息处理重庆市市级重点实验室建设项目(CSTC,2009CA2003);重庆市自然科学基金项目(CSTC,2009BB2287,CSTC,2010BB2398,CSTC,2010BB2411);重庆市科技攻关计划项目(CSTC,2011AB2008)


Infrared Image Denoising Based on Adaptive Over-complete Sparse Representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统滤波算法在滤除红外图像噪声时会损失部分有用信息的问题,提出一种基于自适应过完备稀疏表示的红外图像滤波方法。该方法采用K-SVD算法以待滤波的红外图像为样本训练出自适应过完备原子库;采用正交匹配跟踪算法将红外图像信号在该过完备原子库上稀疏分解为稀疏成分和其他成分,稀疏成分对应红外图像中的有用信息,其他成分对应红外图像中的噪声,由稀疏成分重建图像,从而达到消除噪声的目的。实验结果表明:该方法相比传统方法具有更好的滤波效果,重建图像质量较高。 更多还原

    Abstract:

    As traditional infrared image denoising methods usually achieve the satisfactory effect at the cost of damaging the image content, an infrared image denoising method based on adaptive over-complete sparse representation is presented. The image can be decomposed via orthogonal matching pursuit algorithm into the content part and the remainer on the adaptive dictionary trained by the K-SVD method in allusion to the infrared image, eventually the infrared image can be reconstructed by the content part. Experimental results show the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-05-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-01-09
  • 出版日期:
文章二维码

漂浮通知

①《半导体光电》新近入编《中文核心期刊要目总览》2023年版(即第10版),这是本刊自1992年以来连续第10次被《中文核心期刊要目总览》收录。
②目前,《半导体光电》已入编四个最新版高质量科技期刊分级目录,它们分别是中国电子学会《电子技术、通信技术领域高质量科技期刊分级目录》(T3)、中国图象图形学学会《图像图形领域高质量科技期刊分级目录》(T3)、中国电工技术学会《电气工程领域高质量科技期刊分级目录》(T3)和中国照明学会《照明领域高质量科技期刊分级目录》(T2)。
③关于用户登录弱密码必须强制调整的说明
④《半导体光电》微信公众号“半导体光电期刊”已开通,欢迎关注