摘要:针对中值滤波导致部分图像细节损失和均值滤波出现模糊现象,设计了一种适用于椒盐和高斯混合噪声的自适应滤波算法。该算法先用最小邻域的均值和阈值判断噪声类型,然后使用加权中值滤波处理椒盐噪声,再利用拉普拉斯算子和相应阈值判断图像边缘细节,最后对高斯噪声进行加权均值滤波。实验仿真结果表明,从图像视觉效果来看,相比单独使用中值和均值滤波降噪,自适应滤波算法对图像的还原效果更好,图像细节保存较好,模糊程度相对较弱,图像更清晰。通过对比峰值信噪比(PSNR)和均方误差(MSE),对混合噪声进行处理时,滤波算法的PSNR和MSE值优于中值和均值滤波,有效还原了噪声图像。整个算法是在最小邻域空间进行,易于实现,对混合噪声的处理效果较好,为图像处理的系统集成化设计提供了技术支持。